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Diffusion Problem

Our objective is to solve the diffusion problem in the mixed form{
K−1 u +∇ p = 0 in Ω ⊂ R2,

∇ · u + c p = f in Ω,

with boundary data

p = gD on ∂ΩD ,

u · n̂ = gN on ∂ΩN .

Challenges:

The diffusion tensor K may sharply vary in Ω and may be
discontinuous

We want to use general polygonal meshes, and

be able to handle material interfaces not aligned with the
mesh
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Mesh

(a) Macro-mesh T (b) Multi-material cells (c) MOF

Moment-of-fluid interface reconstruction ⇒ reconstructed interface
may be discontinuous
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Local Problem

Consider T ∈ TH :


K−1 u +∇ p = 0 in T ,

∇ · u + c p = f in T ,

p = λ on ∂T

⇓

Find trial functions 〈u, p〉 ∈ Hdiv (T )× L2 (T ) such that
∫
T

K−1 u · v dx−
∫
T
p∇ · v dx = −

∫
∂T
λ v · n̂ dl ,∫

T
∇ · u q dx +

∫
T
c p q dx =

∫
T
f q dx

holds for all test functions 〈v, q〉 ∈ Hdiv (T )× L2 (T )

Alexander Zhiliakov ASC(n) Method 5 / 25



Local Problem

Consider T ∈ TH :


K−1 u +∇ p = 0 in T ,

∇ · u + c p = f in T ,

p = λ on ∂T

⇓

Minimesh τ h of T

⇒
Discretization

Apply Mimetic Finite Difference
Method*

⇓(
Mτ BT

τ

−Bτ Στ

)(
uτ

pτ

)
=

(
Eτ Cτ λτ

fτ

)
*L. Beirao da Veiga, K. Lipnikov, G. Manzini
The Mimetic Finite Difference Method for Elliptic Problems
Springer 2014

Alexander Zhiliakov ASC(n) Method 5 / 25

https://www.springer.com/us/book/9783319026626


Approximate Static Condensation

If one knows the pressure trace λ for each T ∈ T, one can recover
the solution in T. The idea is (i) to express external flux DOFs in
terms of trace DOFs (static condensation),

uext
τ := ET

τ uτ = Aτ Cτ λτ − aτ ,

and (ii) to get the system for trace DOFs by requiring weak
continuity of fluxes. Problem: we may have different number of
trace DOFs from T+ and T−

F

T+ T−
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Approximate Static Condensation

F

T+ T−

Solution: approximate a pressure trace on F with a
polynomial λF ∈ Pn (F ) described in terms of its (n + 1) moments

λ
(i)
F =

∫
F λ si dl

|F |
, i = 0, . . . , n.

Here si ∈ Pi (F ) is a fixed polynomial of degree i such
that si ⊥L2 sj , j < i
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ASC(n): DOFs and Constraints

D
O

F
s


Now we express trace DOFs on mini faces of τ via coarse trace
DOFs := (n + 1) moments on each base face of T ,

λτ = Rτ λT ⇒
uext
τ = Aτ Cτ Rτ λT − aτ ,

C
on

st
ra

in
ts


and close the system by requiring weak continuity of normal
fluxes on each base face∫

F
u|T+ · n̂ si dl =

∫
F

u|T− · n̂ si dl , i = 0, . . . , n for F ∈ Fint

Express fluxes in terms of traces ⇒ get SLAE for coarse trace
DOFs
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ASC(1) DOFs

λ
(0

)
4

(T
)

F

λ
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)
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λ11(τ )
λ12(τ )
λ13(τ )
λ21(τ )
λ22(τ )
λ23(τ )
λ31(τ )
λ32(τ )
λ41(τ )


︸ ︷︷ ︸

λτ =

=



1 s11 0 0 0 0 0
1 s12 0 0 0 0 0
1 s13 0 0 0 0 0
0 0 1 s21 0 0 0
0 0 1 s22 0 0 0
0 0 1 s23 0 0 0
0 0 0 0 1 s31 0
0 0 0 0 1 s32 0
0 0 0 0 0 0 1


︸ ︷︷ ︸

Rτ =



λ
(0)
1 (T )

λ
(1)
1 (T )

λ
(0)
2 (T )

λ
(1)
2 (T )

λ
(0)
3 (T )

λ
(1)
3 (T )

λ
(0)
4 (T )


︸ ︷︷ ︸

λT =

Here sij := signed distance
between jth mini-face and ith
macro-face centroids. For
ASC(0) the matrix Rτ is as on
the left with rows containing sij -s
eliminated.
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ASC(1) System Assembly

∫
F

u|T+ · n̂ si dl =

∫
F

u|T− · n̂ si dl , i = 0, . . . , n for F ∈ Fint

⇓

n = 0 :
∑

f∈fF (T+)

uext
τ+ (f ) |f |+

∑
f∈fF (T−)

uext
τ−(f ) |f | = 0,

n = 1 :
∑

f∈fF (T+)

uext
τ+ (f )

∫
f

s1 dl +
∑

f∈fF (T−)

uext
τ−(f )

∫
f

s1 dl = 0

⇓(
RT

τ+ Cτ+ uext
τ+

)
i+m

+
(

RT
τ− Cτ− uext

τ−

)
j+m

= 0, m ∈ {0, 1}

⇓((
RT

τ+ Cτ+ Aτ+ Cτ+ Rτ+

)
︸ ︷︷ ︸

ST+ :=

λT+

)
i+m

+
((

RT
τ− Cτ− Aτ− Cτ− Rτ−

)
︸ ︷︷ ︸

S
T− :=

λT−

)
j+m

=

(
RT

τ+ Cτ+ aτ+︸ ︷︷ ︸
sT+

)
i+m

+
(

RT
τ− Cτ− aτ−︸ ︷︷ ︸

s
T−

)
j+m
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ASC(1) System Assembly

∫
F

u|T+ · n̂ si dl =

∫
F

u|T− · n̂ si dl , i = 0, . . . , n for F ∈ Fint

⇓

n = 0 :
∑

f∈fF (T+)

uext
τ+ (f ) |f |+

∑
f∈fF (T−)

uext
τ−(f ) |f | = 0,

n = 1 :
∑

f∈fF (T+)

uext
τ+ (f )

∫
f

s1 dl +
∑

f∈fF (T−)

uext
τ−(f )

∫
f

s1 dl = 0

⇓(
RT

τ+ Cτ+ uext
τ+

)
i+m

+
(

RT
τ− Cτ− uext

τ−

)
j+m

= 0, m ∈ {0, 1}

⇓

ST =
∑
T∈T

NT
T ST NT , Global system:

sT =
∑
T∈T

NT
T sT , ST λT = sT
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ASC(1) System Assembly

ST =
∑
T∈T

NT
T ST NT , Global system:

sT =
∑
T∈T

NT
T sT , ST λT = sT

Theorem: system matrix ST is sparse and SPD for ASC(0)
and ASC(1)

Hence efficient solvers and preconditioners are available (e. g.
CG + Algebraic Multigrid)

Once we obtain λT, we recover pressure and flux DOFs in
each cell T ∈ T (this may be done in parallel)
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ASC(1): Algebraic Robustness (1 / 2)

Figure: w := width of the left minimesh cells

(a) w = .1 (b) w = .01 (c) w = .001

We solve the diffusion problem w/ K = k I, k = 1 on the left part
and .1 on the right. Exact solution is piecewise linear
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ASC(1): Algebraic Robustness (2 / 2)

Figure: Condition Numbers of ASC(0) / ASC(1) Matrices

w κASC(0) κASC(1) κ̃ASC(1)

10−1 41.0 1 730 41.0

10−2 45.2 2 817 45.1

10−3 48.3 16 391 48.3

10−4 49.0 152 325 49.0

10−5 49.1 1.5× 106 49.1

κASC(0) does not depend on w , and κASC(1) is proportional to w−1.
However, if we remove 3 smallest eig values (corresponding to 3 int
MM faces), we will have κ̃ASC(1) ≈ κASC(0). Starting from some
iteration CG behaves like extreme eig values are not present; that
is, several small eig values is not a problem
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l2-Error

If the base mesh consists of triangles + we have no material
interfaces, ASC(n) boils down to Mixed-Hybrid Raviart – Thomas
FEM:

‖u− uh‖L2(Ω) ≤ c h ‖u‖H1(Ω),

‖p − ph‖L2(Ω) ≤ c
(
h ‖p‖H1(Ω) + h2 ‖p‖H2(Ω)

)
.

That is, we cannot expect ASC(n) convergence to be better than
linear. We define discrete L2-norm

‖v‖l2(Ω) := ‖Ph v‖L2(Ω) ≤ ‖v‖L2(Ω),

where Ph := L2-projection operator on the space of piecewise
constant functions on each cell T ∈ T (or on each τ ∈ τ if T is a
MMC)

Alexander Zhiliakov ASC(n) Method 14 / 25



ASC(0) → ASC(1): Motivation

(a) ||p − ph||l2(Ω) = 6.38× 10−2 (b) ||p − ph||l2(Ω) = 6.41× 10−2

Here Ki = Kj and the exact soln is linear. ASC(0) produces errors
due to const trace approximation, and ACS(1) recovers the exact
soln
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Piecewise Linear Solution (1 / 2)

We solve the diffusion problem on the sequence of square meshes
w/ K = k I, k = 1 on the left part and .1 on the right. Exact
solution is piecewise linear

(a) Exact soln, p
(b) Materials
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Piecewise Linear Solution (2 / 2)

A
S

C
(0

)

h el
2

p ρp e∞p el
2

u ρu

3.5× 10−1 7.3× 10−1 4.8 6.6× 10−1

8.8× 10−2 1.6× 10−1 1.1 1.2 3.5× 10−1 0.46

2.2× 10−2 3.7× 10−2 1.1 3.4× 10−1 1.3× 10−1 0.71

5.5× 10−3 8.9× 10−3 1.0 7.9× 10−2 4.1× 10−2 0.83

A
S

C
(1

)

h el
2

p ρp e∞p el
2

u ρu

3.5× 10−1 2.5× 10−2 2.9× 10−1 4.6× 10−2

8.8× 10−2 1.9× 10−3 1.84 6.6× 10−2 2.0× 10−2 0.6

2.2× 10−2 1.6× 10−4 1.79 4.3× 10−2 5.5× 10−3 0.93

5.5× 10−3 1.3× 10−5 1.80 2.0× 10−2 1.3× 10−3 1.
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Piecewise Quadratic Solutions w/ 2 Materials (1 / 3)

We solve the diffusion problem on Voronoi meshes w/ K = k I,
k = 1 outside the circle and .001 inside. Exact solution is pw
quadratic. We compare convergence of ASC(0) and ASC(1)

(a) Exact soln, p

(b) p(x , 1
2 )
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Piecewise Quadratic Solution w/ 2 Materials (2 / 3)

A
S

C
(0

)
h el

2

p ρp e∞p el
2

u ρu
3.0× 10−1 2.4× 10−3 6.3× 10−1 6.9× 10−5

1.5× 10−1 6.5× 10−4 2.0 7.0× 10−3 3.6× 10−5 0.9

8.1× 10−2 2.6× 10−4 1.4 3.2× 10−3 3.4× 10−5 0.09

4.2× 10−2 1.4× 10−4 0.9 2.3× 10−3 2.1× 10−5 0.73

2.1× 10−2 3.7× 10−5 1.9 1.1× 10−3 1.1× 10−5 0.93

1.0× 10−2 2.7× 10−5 0.4 8.6× 10−4 6.5× 10−6 0.75

A
S

C
(1

)

h el
2

p ρp e∞p el
2

u ρu
3.0× 10−1 2.4× 10−3 2.1× 10−3 1.2× 10−4

1.5× 10−1 7.0× 10−4 1.9 1.3× 10−2 6.5× 10−5 0.88

8.1× 10−2 2.3× 10−4 1.8 6.8× 10−4 3.0× 10−5 1.25

4.2× 10−2 6.8× 10−5 1.8 3.2× 10−4 1.4× 10−5 1.16

2.1× 10−2 2.0× 10−5 1.8 1.1× 10−4 5.0× 10−6 1.48

1.0× 10−2 5.4× 10−6 1.9 3.3× 10−5 2.2× 10−6 1.18

We observe a jump of ∞-error of ASC(1) at h = 1.5× 10−1

Alexander Zhiliakov ASC(n) Method 19 / 25



Piecewise Quadratic Solution w/ 2 Materials (3 / 3)

(a) Materials

h = 1.5× 10−1: This exam-
ple shows that ASC(1) ∞-norm
may be sensitive to geometry er-
rors. However, it does not affect
l2-convergence

(b) ASC(0), ph (c) ASC(1), ph
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Piecewise Quadratic Solution w/ 3 Materials (1 / 2)

We solve the diffusion problem on triangular meshes w/ K = k I,
k = 1 outside the ring and .001 inside. Exact solution is piecewise
quadratic

(a) Exact soln, p

(b) p(x , 1
2 )
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Piecewise Quadratic Solution w/ 3 Materials (2 / 2)
A

S
C

(0
)

h el
2

p ρp e∞p
3.0× 10−1 4.5 17

2.5× 10−1 4.5 17

1.3× 10−1 4.0 17

8.3× 10−2 4.4 17

6.7× 10−2 7.1× 10−1 4.9

4.3× 10−2 4.5× 10−1 1.2 5.0

A
S

C
(1

)

h el
2

p ρp e∞p
3.0× 10−1 4.5× 10−1 3.5

2.5× 10−1 2.6× 10−1 3 2.7

1.3× 10−1 9.2× 10−2 1.5 6.2× 10−1

8.3× 10−2 4.8× 10−2 1.6 8.3× 10−1

6.7× 10−2 2.8× 10−2 2.5 2.3× 10−1

4.3× 10−2 1.0× 10−2 2.3 6.3× 10−2

A
ri

th
m

et
ic

h
o

m
o

. h el
2

p ρp e∞p
3.0× 10−1 4.9 17

2.5× 10−1 5.0 17

1.3× 10−1 4.9 17

8.3× 10−2 4.7 17

6.7× 10−2 4.4 16

4.3× 10−2 9.7× 10−1 3.5 5.7

H
ar

m
o

n
ic

h
o

m
o

. h el
2

p ρp e∞p
3.0× 10−1 2.3 15

2.5× 10−1 1.7 1.6 16

1.3× 10−1 7.3× 10−1 1.2 12

8.3× 10−2 4.8× 10−1 1.0 12

6.7× 10−2 3.4× 10−1 1.6 9.4

4.3× 10−2 1.6× 10−1 1.7 8.2

Before h = 6.7× 10−2 we have cells / faces with 3 materials, and after
this mesh level we have only 2 material MMCs
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Unsteady Problem (1 / 2)

We solve the unsteady diffusion problem on Voronoi meshes w/
K = k I, k = .002 inside the ring, 10 in the inner disk, and 1
elsewhere. We set gD = 1 on the left bndry and 0 on the right; top
and bottom bndries are insulated. Equilibrium state is p ≡ 1

(a) Conforming (super)mesh
(b) Cuts p∗

(
(x , 0.5), t

)
of the ref soln
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Unsteady Problem (2 / 2)

(a) Reference (b) Arithmetic homo. (c) Harmonic homo.

(d) ASC(0) (e) ASC(1) (f) ASC(0, 1) difference

Comparison of the discrete solutions ph, h = 1.5× 10−1, t = 1.25 (play)
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Summary

Results:

ASC(n) is able to efficiently handle unfitted material interfaces

2nd order l2-convergence for ASC(1)

Effective condition number seems to be uniformly bounded
w.r.t. an interface position

The underline matrix is SPD and sparse; its pattern does not
depend on mini meshes

A. Zhiliakov et al. A higher order approximate static
condensation method for multi-material diffusion problems,
2019 (JCP preprint)

TODO List:

Anisotropic diffusion: homogenization is not applicable; what
about ASC(n)?
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